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Abstract 
 

We present and discuss several spatiotemporal 
kernels designed to mine real-life and simulated data 
in support of drought prediction.  We implement and 
empirically validate these kernels for Support Vector 
machines.  Issues related to the nature of geographic 
data such as autocorrelation and directionality are 
investigated.  
 
1. Introduction 
 

It is the purpose of this work to increase the toolset 
available for use in spatiotemporal data mining 
scenarios through the development of geographically 
sensitive kernels for Support Vector Machine (SVM) 
data mining. We are motivated by drought, an 
application that is meaningful to society and varies in 
both temporal and geographic space. Drought is a 
common natural hazard that, on average, results in 
multibillion dollar disasters nearly every year in the 
United States alone [7].  The recent Intergovernmental 
Panel on Climate Change (IPCC) report states that the 
severity of the impacts of drought will may be 
increasing through the effects of a changing climate 
[5].  Second, it is clear that drought varies in both 
space and time.  A casual look at the archived maps 
produced by the US Drought Monitor (as in Figure 1) 
will show drought as a phenomenon that exhibits 
dynamical space-time behavior through merges, splits, 
growth, & decline, and provides a rich set of behaviors 
that researches may query [18].    

Our general development process is two-fold.  First, 
new kernels will be created that exhibit spatiotemporal 
biases.  Our current work is development of kernels 
that are sensitive to autocorrelation, and directionality 
of spatial phenomenon (e.g. orientation).  For instance, 
kernels that take advantage of autocorrelation by 
emphasizing local structure are implemented.  
Furthermore, spatial kernels that emphasize 
directionality such as might exist in an east-to-west 

flow pattern are created and tested as outlined in the 
methods section below. Second, once the constructions 
are achieved, are tested against the expected effects in 
geotemporal data space regarding autocorrelation, and 
directionality. 

 

 
 
Figure 1 - The US Drought Monitor map, valid 
July 8th, 2008 [16].  The darker red regions 
indicate more intense conditions of drought 
while the yellow regions are merely 
abnormally dry.  Go to 
http://www.drought.unl.edu/dm/ for current 
maps and a full discussion of the Drought 
Monitor. 

 
The field of geospatial technologies is one of the top 
ten upcoming industries of this age.  Valued at over 
$10 billion annually and growing at over 10% per year 
[6], the application space in terms of both volume and 
diversity has great potential.  With private GPS 
technology, there is an explosion of geo-enabled data 
becoming available. [19, 14].  Although much of this 
geographical data is time stamped and thus could 
potentially be embedded within spatiotemporal 
processes and patterns, the potential to mine this data 
for patterns and processes remains largely untapped 
due to the nascency of spatiotemporal data mining 
techniques. 
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2. Review 
 
2.1. Geographic Data 
 

The exploration of phenomenon such as drought 
distributed in geographic space presents certain unique 
challenges and opportunities.  These data are subject to 
the effects of sampling, scaling, periodicity, fractal 
dimension, direction, and autocorrelation [6]. 

Recording geographic data necessarily implies that 
some form of sampling has been used as simplifying 
choices have been made.  In terms of the drought data 
that we are using, the samples are of interpolated 
drought intensity values across a regular geographic 
grid of latitude and longitude similar to that illustrated 
in Figure 2.  Thus, our samples consist of one half 
degree on a side quadrilaterals oriented in a North-
South, and East-West fashion.  For latitudes similar to 
those of the United States, this implies roughly 50 km 
resolution on the ground in both latitude and longitude.  
With this sample size, we cannot detect spatial 
structure less than about 100 km in diameter. 

Scale, of potentially several meanings in the 
geographic world [6], in the present study refers to the 
level of spatial detail that can be discerned in data.  
Scale is directly impacted by the sampling as the finest 
level of discernable detail will be no smaller than twice 
the nearest distance between sample points.  However, 
it is also impacted by the size of any window used for a 
neighborhood view of the data.  Referring to our 
drought data for an example, if we let a moving 
window of nine grid cells determine the output value of 
a new map our results will be different than if we 
looked at a different scale of say, twenty five grid cells.  
Also, scale changes when re-sampling through 
aggregation.  This is an important operation that must 
often be performed on geographic data to ensure that 
dissimilar data can be appropriated overlaid. 

Geographic data may also have repetitive features 
such as streams that occur every few miles that drain 
parallel valleys.  This repetitive nature may even 
extend into the realm of fractal geometry.  The classic 
geographic example of a fractal object is of a coastline.  
Depending on the length of the stick you use to 
measure the coast, you’ll come up with different 
answers.  The shorter the stick, the more variations in 
the coast that are accounted for and the longer the 
measurement becomes. 

 
 

 
 
Figure 2 - A five degree geographical grid 
overlaid on the contiguous United States.  The 
actual grids used in our study were one half of 
a degree on a side for the real world SPI data.  
For the simulated drought data, both one half 
& two and a half degrees grid spacings were 
used.  The grid above is not aligned with our 
actual grids and is displayed for illustrative 
purposes only. 

 
While these critical characteristics of geographical 

data must always be considered as potential influences 
on the outcome of any geographical study, they are not 
the focus of this study.  The last two characteristics, 
direction and autocorrelation are treated in more detail 
in the present work. 

Direction matters in geography because the real 
world is almost never isotropic.  Distributions and 
flows can align themselves to wind patterns, geologic 
depositions, human constructed highways, and other 
isotropy altering structures. 

Autocorrelation is the tendency for values sampled 
“close” to one another to be similar.  In fact, in the 
geographic world this is codified by Tobler’s 1st Law 
of Geography which states that all things connect in 
some way, but close objects tend to share more 
similarities [6].  Some authors have noted that some 
might say that without autocorrelation, geography 
wouldn’t even matter at all [9].  Thus, while in the 
traditional world of statistics, autocorrelation is to be 
eschewed, in the geographic world it reveals 
underlying spatial structure and may thus be useful.  
Also, in traditional statistics we are often dealing with 
only samples of the space in question.  In geography 
the samples are often the entire population of interest 
and thus no loss of information occurs through the 
presence of autocorrelation [9].  In the example of our 
drought data, the grid cells are exhaustive and mutually 
exclusive in tiling geographic space and thus consist of 
the population of interest.  Unfortunately, 
autocorrelation depends very strongly on sampling and 
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scaling of geographic data.  This can render the 
detection and discussion of spatial autocorrelation an 
art at best.  We proceed with the idea that the 
autocorrelation is present and is part of the predictive 
power of the data, ignoring its presence and making no 
attempt at removing it.  Preliminary experiments with 
the drought data indicated that removing the 
autocorrelation through sampling did not affect the 
results. 

In summary, while not unique to geography, these 
aspects of geographic data and more make geographic 
data what it is, complex, and thus a rich source of 
information to the data mining community.  We will 
specifically focus on the autocorrelation and direction 
aspects of geographic data in this study, hoping that 
others (or ourselves in the future) will attempt further 
studies on all of the discussed characteristics of 
geographic data and the effects they have on data 
mining and machine learning. 
 
2.2. Geographic Kernels 
 

Geographic kernels are, through their design, 
sensitive to data in geographic space.   That is, data 
that is a function of latitude and longitude, or more 
generally Y, and X.  By sensitive we mean that the 
spatial structure in the data takes part in the predictive 
power of the learning machine and structure may be 
potentially revealed by the appropriately chosen kernel. 

Gaussian kernels should be, by their very nature 
sensitive to autocorrelation effects.  This is because as 
the distance falls off, less weight is given to each input.  
The standard Gaussian kernel is well known in the 
machine learning world and uses the distance between 
point locations calculated as a difference between two 
radial vectors. 

Recently, Pozdnoukhov and Kanevski [11] used 
kernel dictionaries wherein several Gaussian radial 
basis functions are made available to an SVM, each of 
which has a different characteristic radius.  In effect, 
their SVM can probe across various geographic scales 
in order to find the kernel best suited for the data at 
hand. 
 
3. Methods 
 
3.1. Data:  Simulated & Real 
 

Our real world drought data is available online from 
the IRI/LDEO Climate Data Library3.  The original 
dataset covers the world in geographical extent and 
from January 1901 to December 1998 in temporal 

                                                           
3 http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/ 

extant and was developed from meteorological data 
gridded by New et. al. [8].  The gridded data is at one 
half degree spacing in both longitude and latitude and 
covers all major land masses except Antarctica.  Of 
particular note in geographic space is the convergence 
of the East-West width of each grid cell.  While each 
cell is of fixed width in longitude, the linear distance 
on the ground diminishes to zero at the poles.  Data 
spacing in the temporal extent is one month and covers 
1176 months in duration.  Since the gridded values 
represent interpolation from real world meteorological 
stations that may not have been in existence over the 
entire temporal extend of the dataset, not every grid 
cell contains data for all times. 

For our study, a subset of the global data was 
created in spatial extent that only covers the contiguous 
United States.  This dataset, of less than 70MB in size, 
is more manageable and is chosen as representative of 
the approach. 

This real data consists of values of the Standardized 
Precipitation Index (SPI).  While literally hundreds of 
drought indices have been defined due to the 
complexity of the phenomenon, this particular index 
stands out as particularly useful for studies in 
geographic space.  This is because it has been shown to 
be spatially invariant [3].  By way of example, an SPI 
value of negative one in Eureka, Utah has the same 
meaning to as a value of negative one for the SPI in 
Thibodeaux, Louisiana.  This is despite the fact that the 
two locations have dramatically different topography 
and climate.  The reason for the invariance is that the 
SPI is actually a probability distribution for rainfall 
that is based on local rainfall statistics.  This 
characteristic of the SPI is of great importance in our 
extended future work because we wish to compare and 
contrast drought across geographic regions. 

It is desirable to mine the real world data to see 
what types of structures and predictions can be made 
regarding drought.  However, real world data may be 
incomplete and contain various amounts of noise.  For 
this reason, simulated drought data was also 
constructed so that we could compare algorithmic 
performance against data whose properties are 
presumably well-known, or at the least complete and 
mathematically predictable. 

We constructed artificial drought data to cover 
spatiotemporal extents similar to the real world ata.  
The data consists of a sinusoidal wave traveling across 
the region from an epicenter near the eastern edge of 
the geographical extent.  The functional from of the 
simulated drought’s intensity can be seen in this 
equation, 
 

I(r,t) = sin(kr- ωt),  eq. (1) 
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where r is the distance from the epicenter, k is the 
spatial wave number (or, 2π/λ where λ is the spatial 
wavelength), and ω is the angular frequency (or, 2πν, 
where ν is the temporal frequency).  The temporal 
frequency (0.02 months) and spatial wavelength (10 
degrees) were chosen to move a simulated drought 
event across a region of about 1000 kilometers in 
diameter in the time span of a few years (a few tens of 
months) in order to mimic typical movements of 
drought as delineated by the US Drought Monitor.  Our 
simulated data varies between +/- 1.0 in value.  This is 
of the same order of magnitude as the real SPI data 
which has values roughly between +/- 2.3 and is 
unitless [4]. 

Finally, several simulated datasets were created by 
varying the levels of noise from a Gaussian noise with 
mean zero and a standard deviation of one.  While 
extreme values may be present in this distribution, 
‘typically’ they are not.  This noisy data is intended to 
provide an idea of how robust our algorithmic 
approach may be in the presence of data imperfections.  
The amount of noise was varied by dividing the output 
of the generator by the values of infinity (effectively no 
noise), 30, 10, 3, 1, 1/3, and 1/10. 
 
3.2. Drought 
 

A careful definition of what is meant by drought is 
required in any study.  Conceptual drought 
characteristics vary by geographic region, by cultural 
response, and by the affected sector. The major sectors 
are meteorological, agricultural, hydrological, and 
socioeconomic [17].  Furthermore, an operational 
definition must be established for computational 
purposes.  The meteorological sector has a long history 
of excellent and extensive data capture.  Furthermore, 
it is simpler to work with meteorological drought since 
the complicated impacts to human and natural systems 
are avoided.  For these reasons, droughts as defined 
from the meteorological sector are chosen for this 
study.   

The specific question we ask of our SVM is 
whether or not the next month will be drier or wetter 
than the current month at the center cell of the 
geographic window representing the input vectors.  In 
other words, is SPIt+1 greater than or less then SPIt in 
value at the center of the geographic window?  Thus, 
the question asks whether or not a grid cell is moving 
towards or away from a condition of drought. 

 
3.3. Kernel variations 

 
As noted earlier, the purpose of this study is to vary 

kernels in order to search for spatial structure with 

SVMs.  Two specific types of spatial structure in 
drought data will be probed in this work:  
autocorrelation, directionality.  Each of these is best 
explained in terms of a concrete example.  As 
mentioned before, spatial autocorrelation is an integral 
part of geographic space.  A Gaussian weighted linear 
kernel is one way to mathematically code Tobler’s 1st 
law and such a  weighted kernel may be used to probe 
the response of the drought predictions based on local 
data providing a stronger influence on the outcome of 
the prediction.. 

To introduce the Gaussian into our geographic 
window, it is necessary to go beyond the Gaussian 
radial basis vectors which work between points and 
find a way for Gaussians to work in an areal fashion.  
We start with the well-known x-squared (polynomial 
of degree 2) kernel and modify it so that it can sense 
spatial structure by using a Gaussian Hat (GHat).  For 
example, in our approach the grid cell of interest is 
taken along with its eight surrounding cells to form a 
9x1 re-dimensioned input vector to the SVM with the 
vector’s label coming from the future state of the 
central cell.  We weight the input from these cells with 
the Gaussian function according to their distance from 
the center cell.  A typical GHat for a 3x3 grid cell 
geographic window might look like Figure 3 below,  

 

0.513 0.717 0.513 

0.717 1.000 0.717 

0.513 0.717 0.513 

 
Figure 3 – Example of a Gaussian hat 
construction for a three by three geographic 
window.  Equation 2 was used for this 
illustration with A set to 1 and s2 set to 3.  
More generally, equation 2 may be used to fine 
tune the Gaussian hat for a particular purpose. 
 
where the weighting is given as in the following 
equation, 
 

Gij = Aexp[ -d2/s2 ],  eq. (2) 
 
where d is the distance from the center cell measured 
between cell centers, A is an amplitude scaling 
constant, and the ij subscript on G refers to the cell’s 
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location with respect to the central cell.  While s is 
typically thought of as related to the standard deviation 
of the data, any useful value may be used to vary the 
shape of the Gaussian surface. 

This type of Gaussian Hat is easily extended to 
larger windows around the cell of interest, e.g. 5x5 or 
larger or even non-square windows.  The GHat is 
introduced to the x-square kernel through the well-
known property that as long as the new kernel is still 
an inner product, it is still a valid kernel as described in 
Bishop [1].  We specifically use the property found in 
equation 3 below and given in Bishop, 

 
k(x,x’) = xTGx,   eq. (3) 

 
where the boldface x’s are appropriately re-
dimensioned input vectors taken from an m by n 
window in geographic space and the boldface G is the 
appropriately re-dimensioned matrix derived from a 
spatial context similar to Figure 3 above. 

For this study, the parameters of the Gaussian are 
chosen to maintain the shape of the surface relative to 
the size of the geographic window.  In other words, if 
the window is three by three grid cells in size, and if a  
divisor of s2 = 3 (as in equation (2) above) has been 
chosen, then if we change the window to a five by five 
grid, then s2 becomes 5 as well. 

An example of directionally biased geographic data 
would be isotherms (or, more generally isolines) on a 
weather map.  Similar temperature values occur near 
the isotherm and change more rapidly as a function of 
orthogonal distance from the isotherm.  Locally, the 
similarity along one direction is the spatial property we 
seek.  It is expected that spatial bias can be revealed 
through the use of non-square windows.  For instance, 
we define a three by seven window as containing three 
cells in the Y (or longitude) direction, and seven cells 
in the X (or latitude) direction. 

To introduce this functionality, we develop a bi-
variate GHat kernel by properly tuning its 
parameterization to respond strongly to biases lying in 
a given direction, thus revealing underlying spatial 
structure.  To do this requires two parameters:  one 
controlling the elongation in the East-West direction 
(EW), and one controlling the elongation in the North-
South direction (NS).  The mathematical form is 
illustrated here,  

 
W = Aexp[ -(y2/b2 + x2/a2)],  eq. (4) 

 
where A is defined the same as in equation (2), b is the 
parameter controlling the elongation in the Y direction, 
and a controls the elongation in the X direction.  The 
completely general form of the bi-variate Gaussian is 

more complicated than what is shown here. However 
by choosing to look only along the cardinal directions, 
the cross terms disappear and we are left with the 
equation above.  In Figure 4 below, we see an isoline 
of a bi-variate Gaussian that is oriented along an EW 
direction (assuming North is up).  An SVM using this 
kernel may be expected to perform better prediction 
than one using a NS biased kernel in the presence of 
data with EW structure. 
 

 
Figure 4 - Isoline of a bi-variate Gaussian is 
illustrated alone with the semi-major and 
semi-minor axes.  The kernel has varying 
spatial extents along orthogonal directions. 
 
3.4. The Algorithmic Approach 
 
We chose to implement the least squares support 
vector machine algorithm as outlined in Suykens, et. al. 
[15], but without the sparse approximation.  Python is 
the language of choice for implementation because of 
its rapidly growing influence in the Geographic 
Information Systems world, and its ability to import 
the SPI data which is in netCDF [12] format through 
the use of freely available, third-party modules.  The 
last one fifth of each dataset was used for testing 
purposes.  In other words, if we had 100 years of data, 
the first 80 would be used to train the SVM and the last 
20 would be used to test the fit.  With 1176 months of 
real SPI data and 1200 months of simulated drought 
data, each test set had over 200 examples in it. 
 
4. Results & Discussion 
 
4.1. The Question Matters 
 

In the process of running scenarios we encountered 
a most interesting observation. In running the Least 
Squares Support Vector Machine (LSSVM) as 
described by Suykens (2000) against random data 
generated across a normal distribution, we were 
witnessing much higher skills than we anticipated
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Threshold True Positive False Positive False Negative True Negative HK Score 
0.0 46 60 66 68 -0.06 
-0.1 86 88 35 31 -0.03 
-0.3 138 100 1 1 0.00 
-0.7 176 64 0 0 0.00 
-1.0 199 41 0 0 0.00 
-1.3 222 18 0 0 0.00 
-1.7 231 9 0 0 0.00 
-2.0 234 6 0 0 0.00 
-2.3 238 2 0 0 0.00 
-2.7 240 0 0 0 NaN 

Table 1 - HK Skill as a function of the question asked on random data.  If the future drought state 
is lower than the threshold, the current label is negative (otherwise positive). 

 
Threshold True Positive False Positive False Negative True Negative HK Score 

0.0 136 75 16 8 -0.02 
-0.1 151 75 5 4 0.11 
-0.3 168 67 0 0 NaN 
-0.7 190 45 0 0 NaN 
-1.0 200 35 0 0 NaN 
-1.3 210 25 0 0 NaN 
-1.7 226 9 0 0 NaN 
-2.0 229 6 0 0 NaN 
-2.3 233 2 0 0 NaN 
-2.7 235 0 0 0 NaN 

Table 2 - HK Skill as a function of the question asked on real SPI drought data.  If the future 
drought state is lower than the threshold, the current label is negative (otherwise positive). 
 
Using the Hanssen and Kuipers (HK) discriminant4, 
which determines how well we are splitting the 
observed positives and negatives, we found skills of 
0.48 where 0.00 should demonstrate no skill.  We 
tested the code against a well-known matlab 
implementation available on Suykens' website and 
found that our code was giving the same answers as an 
acceptable standard implementation of the algorithm. 

We thus concluded that it is not our implementation 
of the LSSVM that is causing the issue. In fact, it 
appears as though the issue is the question itself that 
we are asking. The question was not appropriate for the 
data. In our study, we were attempting to predict a 
future state of drought in the central cell of a gridded 
geographic window by looking at the spatial pattern of 
drought around the central cell. The specific question 
being asked was, "Given the pattern of drought 
conditions at a particular time, will drought conditions 
increase or decrease in the next time step?" Upon 
reflection, it would appear as though this question can 
be asked with skill against a random data set for one 
simple reason. Since the data is a random number 
                                                           
4 The HK Skill (also called TSS) is described at:   
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.h
tml 

(varying between about +/2.3) the LSSVM can guess 
that the next value will be closer to zero and be right a 
significant number of times. 

We then asked a more neutral question, "Will the 
drought value be above zero on the next time step?" 
and found that the algorithm only had a skill of 0.06 in 
answering that question. This is understandable as the 
LSSVM could never determine with any probability 
that the next value would be greater than or less than 
zero. As we varied the question to seek for drought 
values above some nonzero threshold, say 1.7, the 
algorithm continued to provide little to no skill. 
However, as can be seen in Table 1, the number of 
predicted no's slowly decreased, and eventually the 
number of false positives also decreased until the 
algorithm was always predicting better conditions. 
This is to be expected because the more extreme the 
threshold, the more often the machine will predict that 
conditions will be better. Due to the way the HK skill 
test discriminates between the two columns of the 
contingency table, the HK value simply hovers near 
zero. These experiments suggest that the LSSVM, 
which is very good at recognizing patterns, is simply 
finding the structure in the data with relation to the 
question being asked. 
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We followed up using the question of whether or 
not the drought value was below zero or not on the 
next time step on the real drought data. Results in 
Table 2 show that the questions are interacting with the 
data in similar fashion to the random data described 
above. Furthermore, we found that the skill remained 
near zero (absolute value less than 0.10) for the square 
geographic window sizes we tested (3, 5, 7, 9, and 11 
grid cells in width). 
 
4.2. Autocorrelation 
 

 
Figure 5 - Skill at predicting real-world drought 
as a function of geographic window size.  
Both regular linear kernels and linear kernels 
with Gaussian weighting are shown. 

 
We provide, in Figure X, our results on real drought 

data while using the standard linear kernel as compared 
to using our Gaussian Hat kernel. The fact that the skill 
begins at about 0.5 for small geographic window size 
and then slowly decreases implies that the results of the 
random data cases described above are independent 
from this case with real data and using the original 
question. In other words, the findings above of skill for 
the random data case were only possible because of 
structure in the data with respect to the question being 
asked. In Figure 5, we feel that the skill being 
demonstrated is a direct result of the LSSVM being 
able to discern patterns in the data with respect to the 
question being asked as well. Specifically, the question 
being asked in Figure 5 is the original question of 
"Given the pattern of drought conditions at a particular 
time, will drought conditions increase or decrease in 
the next time step?" It is appears that the Gaussian Hat 
kernel, in general, provides greater skill over larger 
geographical window sizes than the simple linear 
kernel. Furthermore, it seems as though Tobler's First 
Law of Geography also holds true as the smaller 

geographic window size does a better job at predicting 
the future state of drought at this particular location for 
both styles of kernel. 
 
4.3. Directionally Biased Kernels 

 
We applied directional biases to our kernels by 

creating sample vectors out of differing rectangular 
windows around the central grid point. For instance, 
windows of 3x5 or 9x5 might be chosen around and 
including the central grid point to construct the sample 
vector. When directionally biased kernels were applied 
to our pure sine world data, the effects of the biasing 
went unseen because of the efficiency of the SVM's in 
finding the patterns. In other words, we always found 
perfect skill in prediction on the sine world data 
whether or not biases were used. 

We overcame this impediment by introducing noise 
to the pure sine world so that the SVM must try harder 
to find the patterns.  We generated Gaussian noise with 
mean of zero and standard deviation of one, divided it 
by three, and then added it to the pure sine data at one 
half degree grid spacing.  We then ran the algorithm on 
120 geographic locations along an East-West transect 
while using both EW and NS biased kernels.  We used 
windows of 3x7 and 7x3 in size.  The HK skill dropped 
to values between about 0.3 and 0.5 so that we had 
non-perfect skills to compare.  Since the use of these 
kernels is aimed at finding structure in geotemporal 
data, it makes little sense to use statistical tests that rely 
upon assumptions about the data.  Consequently, we 
chose the Wilcoxon Signed Rank Test [10] to test our 
hypotheses where, Ho: The EW biasing of the kernels 
makes no difference to HK skill of the SVM, and Ha:   
The EW biased kernels will provide greater skill for 
the SVM. 

That these hypotheses make sense can be 
appreciated by envisioning riding on a wave of 
drought.  If you look along the crest (NS biased kernel) 
of a drought moving in the EW direction, you will see 
little variation.  In essence, the world looks flat and 
there is less information available to predict the future.  
However, if you look along the direction of travel of 
the wave, you start to see rising and falling structure 
that can help to predict the future state of your location. 

For 120 samples, we compute the appropriate test 
statistic and find that z = -1.7672, leading to a p-value 
of less than 0.0392.  Thus, we clearly reject the null 
hypothesis at a level of 95% confidence.  The EW 
biasing does indeed reveal more information about the 
underlying structure in the data. 

With this confidence, we next turn our attention to 
real drought data and apply the directionally biased 
kernels to the SPI data along three contiguous transects 
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Figure 6 - Three latitudinal transects laying across the southern United States between North 
Carolina in the East (at the right) to Arizona in the West (at the left).  The upper transect is located 
at 35.75 degrees North, the middle at 35.25 degrees North and the lower at 34.75 degrees North 
latitude.  The gray circles represent locations where a North-South biased kernel gave better skill, 
while the black circles represent locations where an East-West biased kernel was better. 

 
 

at latitudes of 34.75, 35.25, and 35.75 degrees north 
latitude.  These transects are also spaced at one half 
degrees in longitude and run from North Carolina in 
the eastern United States to Arizona in the western 
United States.  The results may be seen in Figure 6 
which may be imagined to overlay a map of the United 
States with North being up and East to the right.  In 
this figure, the size of the dot represents the absolute 
value of the difference between the HK skills for EW 
and NS biased kernels.  If the skills are the same, no 
dot appears.  If the skill score favors the EW kernel, 
then the dot appears black, and if the skill score favors 
the NS kernel, the dot is gray.  Several contiguous 
regions appear to exist wherein EW or NS structure to 
dominate the drought landscape for a degree or two in 
spatial extent. 

 
5. Conclusions & Future Work 
 

Perhaps the most startling realization concerning 
our results was the fact that the questions matter.  
Interaction between the questions and data itself 
creates structure that may lead to perfectly correct, yet 
useless conclusions.  This occurred when we asked a 
perfectly reasonable question about real drought data 
against a random data set.  This implies that it is 
always wise to vary questions, parameters, and 
algorithms and verify that answers are consistent with 
theoretical results.  This is not always an easy task, but 
carefully constructed artificial datasets can aide greatly 
in the task. 

Our results from varying the geographic window 
size along with the Gaussian weighting both point to 
the usefulness of autocorrelation in the data to 
improving the predictability of drought.  This is for 
two reasons.  First, when the geographic window was 
increased in size with either linear or linear combined 
with Gaussian hat kernels, predictability of future 
drought waned.  This implies Tobler’s 1st Law is in 
effect and that we should focus our efforts at using the 
nearby information to predict drought.  Second, when 
Gaussian hats were used, the ability of the kernel to 

perform better at larger distances from the central grid 
cell improved.  Once again, this arises from the 
suppression of distant noise by the Gaussian hat.  This 
implies that we may use a larger window size for some 
particular purpose, yet still emphasize the nearest and 
most meaningful data through the Gaussian hat.  The 
tradeoffs afforded by these two opposing effects offers 
a richer selection of parameters with which to tune 
geographically sensitive kernels. 

Results from the application of directionally biased 
kernels show how to further enrich the geographical 
sensitivity of kernels as EW and NW biased kernels 
showed a statistically significant difference in the 
abilities to predict future states of simulated drought in 
data with known underlying structure.   We carried that 
idea to the next step and used two kernels biased in 
orthogonal directions to reveal potential underlying 
structure in real drought across the United States.  
Future work will include mapping of entire regions and 
potentially continents in this fashion.  Additionally, 
with greater areal coverage provided by these maps, 
more powerful spatial statistics may be applied to the 
results to confirm the existence of coherently regions 
of drought prediction skill. 

In making the above maps, it is desirable to have 
full control over the directionality responses.  In other 
words, we not only want to know there is an EW 
structure, we wish to assign a direction to this 
structure.  Is drought propagating from the East?  Or, 
from the West?  Additionally, the inter-cardinal 
direction will be used. We will continue further 
research into greater directionality control of the 
kernels. 

Several other ideas present themselves immediately 
for research beyond that outlined above:  one of these 
ideas involves further exploration of the temporal 
dependence of the kernel spaces as variation of the 
temporal extent of the kernel may yield better 
predictability in the drought data.  In other words, we 
would like to explore the ability of the presence of 
multiple previous time snapshots [2] in the kernels for 
prediction of the next step’s state.  Appropriately re-
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dimensioned vectors will be constructed from more 
than one previous time step.  Indeed, following Şen 
[13], it is very likely that drought is better modeled by 
including its persistent nature in the prediction process. 

Two more ideas for future work involve comparison 
of our results against other known algorithms and also 
against other datasets.  First, we wish to run a series of 
comparison experiments by using another algorithm 
such as Markov Chains to compare its predictive 
power against the SVM approach we have used here.  
This series of comparisons could reveal whether or not 
a spatial approach (using the geographic 
neighborhood) of a grid cell location is more skillful in 
predicting future states of drought than by simply using 
one spatial dimension.  Second, we wish to run these 
experiments against a different drought index, the 
Palmer Drought Severity Index (PDSI).  While the SPI 
has shown to be spatially invariant, because of its 
dependence upon local time series data, it may not be 
stationary in view of global climate change.  The PDSI 
value, while not spatially invariant does use 
temperature as one of its independent variables.  Thus, 
it may provide better predictive power in the long-run 
under global climate change. 

Another future goal is improved computational 
performance in the SVM.  Currently, about 13 seconds 
may be required to run through the algorithm for a 
single geographic location.  While this is sufficient for 
initial exploration of kernels and parameters, it is 
inadequate for our ultimate tasks of creating maps, 
testing many kernel variations, and using multiple 
datasets.  For instance, to make a single map of the 
United State at one half degree resolution requires 
roughly 7200 locations to be tested.  Implementation of 
sparse approximation as presented by Suykens et. al 
[15] may aid us in this task.  Also, exploration of the 
gamma parameter space, which fine tunes the learning 
rate may help here as well. 

As can be seen from the potential future work 
discussed above, the application of geotemporally 
sensitive kernels in SVM machines to real-world data 
is tremendous.  There is much work left to be done and 
the authors invite all interested parties to continue to 
develop these kernel ideas and applying them to other 
domains of knowledge.  All of our data and code is 
available at http://idea.cs.ou.edu/ . 
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