
Creating Significant Learning Experiences in Introductory
Artificial Intelligence

Amy McGovern
School of Computer Science

University of Oklahoma
Norman, OK 73019

amcgovern@ou.edu

Jason Fager
School of Computer Science

University of Oklahoma
Norman, OK 73019
jfager@ou.edu

ABSTRACT
We introduced an arcade-style gaming environment for use
in a mixed undergraduate and graduate introductory artifi-
cial intelligence (AI) course. Our primary goal in this course
was to provide students with a ”significant learning experi-
ence” [3]. We achieved this goal by creating projects based
in the game environment that illustrate several major AI
topic areas. These projects were designed to be challenging,
enjoyable, and to demonstrate AI programming in a realis-
tic environment. Each of the projects was designed to be
feasible for all the students yet flexible enough to allow the
stronger students to explore alternative solutions. We eval-
uated our success in achieving these goals through student
evaluations, comments, and exam grades.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Misc.; K.3.2 [Computers
and Education]: Computer and Information Science Edu-
cation—Computer Science Education

General Terms
Experimentation

Keywords
Significant Learning Experiences, Games, Semester Projects

1. INTRODUCTION
Student involvement is one of the primary distinguish-

ing characteristics of a ”significant learning experience” [3].
In engineering and science courses, efforts to foster student
involvement often take the form of semester long projects.
Projects that enable an introductory AI class to succeed at
the goal of creating a significant learning experience should
meet the following criteria.

1. Be enjoyable enough to stimulate and maintain stu-
dent interest throughout the semester.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

2. Be flexible enough to illustrate many of the possible
topics that can be covered in an AI class. The project
should focus on the AI aspects of each task and not
require a significant amount of external knowledge.

3. Be extensible so that stronger students can explore al-
ternatives to the main solution approach while weaker
students can still complete the project.

4. Be sufficiently challenging to invest students in creat-
ing a good AI solution but not allow trivial answers.

5. Be realistic enough that students gain an appreciation
for working on real-world applications of AI.

6. Be feasible[7]. This is particularly important for main-
taining student interest.

The introductory AI class at the University of Oklahoma
is open to seniors and graduate students with some advanced
juniors also entering the class. In the spring 2006 class, we
had 33 students. Five of those were graduate students and
the remaining 28 were undergraduate students.

In an effort to create significant learning experiences in
our AI class, we introduced an arcade-style gaming environ-
ment. Our game, Spacewar, was designed and programmed
primarily by a small team of students enrolled in a gradu-
ate machine learning class in the fall of 2005. Spacewar was
inspired by the classic game of the same name written by
Stephen Russell at MIT in the early 1960s [4] and the ar-
cade game Asteroids. Two or more teams, each with at least
one ship, battle each other in an environment that contains
moving obstacles, bullets, and energy beacons. A complete
description of Spacewar is given in the next section.

This gaming environment satisfied all six of the criteria
for a successful project specified above. By their nature,
game-based projects tend to satisfy criterion 1. Providing
a graphical setup helps to maintain student interest in the
game. Spacewar allows the students to play alongside the
intelligent agents that they have created, which also helps
to maintain student interest. Many of the students are mo-
tivated to create an agent that can play better than them-
selves. This becomes a fun challenge for the students and an
introduction to AI programming that many AI researchers
are familiar with. To help stimulate and maintain interest,
we also created a class-wide competition for each project.
The competition ladder ran daily and students who rose to
the top of the ladder received extra credit on the project.
Once the top player received the maximum extra credit, the
extra credit went to the next player on the ladder.

During the past semester, we used the spacewar simulator
for three major projects. The first project involved naviga-
tion, the second project focused on learning, and the third
project used traditional planning techniques. Our game
environment is flexible enough to adapt it for each of the
projects and to allow the students to use the results of the
earlier projects to complete the subsequent and more diffi-
cult projects. This satisfies criterion 2.

The stronger students demonstrated that Spacewar was
extensible by exploring alternative solutions that still made
heavy use of AI techniques. This satisfies criterion 3. These
students quickly rose to the top of the daily competition lad-
der. If the problem was too trivial, these extensions would
not have been useful. This satisfies criterion 4.

Given that the Spacewar environment is partially observ-
able, stochastic, sequential, dynamic, continuous, multia-
gent, cooperative and competitive (see [6] for definitions of
these terms), criterion 5 is satisfied. Satisfying criterion 6
requires a tradeoff in how realistic the tasks are. We evalu-
ated this tradeoff using student feedback at the end of the
semester and the students felt that the project was realistic.

2. SPACEWAR
Figure 1 shows a screenshot of the Spacewar simulator

in the capture the flag configuration used for the planning
project. Students can program individual ships or teams
of ships. Each ship carries an energy cell that fuels its
thrusters, cannons, and life support systems. If the energy
cell is depleted, the ship self-destructs. A ship can recharge
its energy cell by collecting energy beacons from the envi-
ronment, or by returning to its home base if it is available.
Ships can also be damaged or destroyed by collisions with
asteroids floating in space or from the cannon fire of other
ships. Ships can compete individually or cooperate in teams.

The problem domain is difficult for an AI agent because it
has a large and continuous state space, is a competitive and
cooperative multi-agent environment, and taxes the agent
with several possibly conflicting goals at any given time. The
agent must make low level control and navigation decisions
while simultaneously dealing with the higher-level cognitive
tasks of choosing between attacking an enemy, avoiding an
obstacle, defending a teammate, capturing a flag, or moving
to collect an energy beacon.

Spacewar is written in Java so that it can run on a vari-
ety of machines and is simple enough that changes are fairly
straightforward to make. For instance, the capture the flag
functionality was added by student request. The physics
simulation follows traditional asteroids-style physics in a
toroidal world. Game parameters such as number of ships
per team, number and size of obstacles, and game type are
controlled with an XML configuration file. The source code
and compiled releases are available online under an MIT-
style open-source license at www.cs.ou.edu/∼amy/spacewar.

The focus of the environment is on allowing individuals
or teams to program intelligent agents that can be plugged
into the simulator. An interface is provided for controlling
ships either using a software agent or via direct control by a
human. At each timestep, an agent chooses between rotat-
ing to the left or to the right, firing its thrusters, firing its
cannon, doing nothing, or some reasonable combination of
the above. For example, an agent can turn left, thrust, and
shoot at the same time. This interface is sufficiently simple
that a human player needs only 4 keys to fully control a

ship. Higher-level actions can be programmed as well. It
is also possible to define a central command agent that can
communicate with individual ships.

While the graphical environment is useful for providing
human interactivity and immediate visual feedback, a real-
time simulator is not ideal in all situations. Some learning
algorithms may require many individual games to acquire
sufficient experience for improved performance. Addition-
ally, the requirements of a nightly round-robin competition
ladder make real time simulation infeasible. For these rea-
sons, Spacewar also provides a non-graphical mode that al-
lows the simulator to run at a much faster rate. In this
mode, we can collect detailed statistics for student analysis
or to track performance for the ladder.

3. PROJECTS
The course focused on three fundamental areas of AI:

search, learning, and planning. Each of the projects ad-
dressed one of three core areas. The projects are described
in more detail below.

3.1 Search
A∗[6] is one of the most fundamental of AI search tech-

niques and it is well suited for navigation. A∗ is an opti-
mal informed search technique that requires an admissible
heuristic which estimates the remaining cost to the goal from
any state. The environment for the first project had a sin-
gle ship, moving asteroids, and an energy beacon that was
placed randomly in a clear space in the environment. Bea-
cons did not move unless they were hit by an asteroid or
by cannon fire. In those cases, they reappeared somewhere
else in the environment. Students programmed their ship to
collect as many beacons as possible using A∗ search.

Because the environment was continuous and dynamic,
plain A∗ search could not be used. This helps to satisfy the
criterion of making the project more realistic because very
little of the real world is static, discrete, or deterministic.
To address the continuous nature of the domain, students
could choose to implement A∗ in three ways. The first was
gridded A∗, where the environment was broken in n × m
grid squares. Each square was a vertex in the graph for
A∗ and edges were created between empty adjacent squares.
The second approach was a hierarchical gridded approach
where the grid would only be refined in areas where the
path was promising. The last approach was roadmap A∗,
where the students created a random set of vertices in clear
spaces in the environment and connected nearby vertices as
long as the path between them did not intersect an obstacle.
Figure 1 shows a graphical example of using roadmap A∗ in
the capture the flag environment.

These approaches enabled the students to implement A∗

in a continuous environment but none of them addressed
the dynamics of the moving ships, obstacles, and cannon
fire. This was tricky and we had the students deal with the
dynamics by replanning frequently. Some of the students
chose to replan based on trigger events (such as running into
an obstacle) and some replanned on a fixed time interval.
They were prohibited from replanning at each step.

3.2 Learning
The second segment of class focused on learning with a

particular emphasis on reinforcement learning [8]. Rein-
forcement learning is a semi-supervised machine learning

Capture the flag A∗ Navigation

Figure 1: Left: A game of capture the flag in the Spacewar simulation environment. Energy beacons are
the green circles, flags are triangles, and the brown circles (both small and large) are asteroids. Each ship is
labeled with its name, kills, hits, beacons collected, and current energy levels. Right: Showing the A∗ path
is optional but we include it here to demonstrate navigation using roadmap A∗. The red circles and lines
show the A∗ graph and the best path is highlighted in yellow.

technique where agents learn through interaction with the
environment. Unlike supervised learning where an external
teacher tells the agent the correct answer for each stimu-
lus, a reinforcement learning agent must learn through trial
and error. The agent interacts with the environment by
executing actions and receiving a scalar reinforcement sig-
nal, usually called reward. The reinforcement learning agent
learns a mapping from states to actions that will maximize
the cumulative reward that it receives over time.

The second project had the students create a reinforce-
ment learning agent to intelligently choose from a set of
high-level behaviors. These behaviors included fleeing from
asteroids and ships, moving toward a ship, firing on a ship,
and moving to a beacon. The high-level behaviors were pro-
vided to the students but they could also choose to imple-
ment their own. The students had to design their own state
spaces and reward functions and implement one of two re-
inforcement learning techniques. The overall goal for the
learning agents was to survive as long as possible. To ac-
complish this, agents needed to navigate safely around the
environment, collect energy beacons, and shoot enemy ships.

This project built on the previous project in that students
could make use of their A∗ agent for navigation. We also
provided A∗ code. Reinforcement learning is well suited
to handle the dynamic nature of this environment but the
students had to deal with the continuous state space. We
suggested that the students create a tabular state space by
identifying a set of discrete features that represented the
most important features of the environment and we provided
a list of potential features.

3.3 Planning
The final segment of the course focused on planning and

knowledge representation. Although we originally intended
to make each of the projects individual, by student request,
we modified the final project to use teams. As part of the
course, we had created 6 discussion groups. The final project

was assigned near the end of the semester and the students
had already formed cohesive groups from the discussions
and group quizzes. For this project, each of the six groups
created a team of agents to play the game of capture the flag.
Teams consisted of 3 ships and a flag. Agents cooperated
within a team and teams competitively tried to retrieve as
many flags as possible within a fixed time period. Each
game was played with two teams.

The project required each group to use STRIPS-style [6]
planning to implement a central controller. A pure STRIPS
planner would use a restrictive subset of first-order logic as
a knowledge representation. However the language restric-
tions imposed by STRIPS made the project too difficult.
We allowed the students to extend STRIPS by specifying
negative pre-conditions on their actions. We also allowed
them to specify functions in the pre-conditions, such as has-
MoreFlags(team1, team2), so long as the functions could be
grounded at planning time.

Each team created a set of high-level behaviors for their
ships. They also specified STRIPS-style action schemas for
each of these behaviors, complete with pre and post condi-
tions. This project required the students to understand and
express a logical model of the environment and actions. To
make the planning problem more feasible, we made the as-
teroids stationary and allowed ships to respawn. STRIPS is
designed for static deterministic environments which meant
that the students needed to replan frequently to handle the
dynamics. As with the previous projects, students could re-
plan based on trigger events or could replan on a fixed time
interval. Students could also use the previous two projects
to create their high-level behaviors.

3.4 Results
Navigation with A∗ was the most straightforward of the

three projects but several students had very creative solu-
tions. Students could earn extra credit for both creativity
and ladder placement and 10 of the 33 students earned some

extra credit. Creative solutions included approaches to gen-
erating the map points dynamically, an admissible heuris-
tic that was not straight line distance (32 of the 33 stu-
dents used straight line distance), and dynamically replan-
ning based on trigger events such as running into obstacles,
running low on fuel, or noticing that the beacon had moved.
The project specified a minimum planning interval but the
students who chose to replan on events performed better.

The learning project piqued the creative interest of nearly
half of the students with 16 of the 33 students receiving
some amount of extra credit for creativity. Additionally, 7
students received extra credit for placement on the compet-
itive ladder. Although many of these students overlapped,
several students were able to rank well on the ladder with
no additional creativity. For creativity, one student used
knowledge from a previous class to implement neural nets
[5] for function approximation. Many students focused their
creativity on improvements to the high-level behaviors, par-
ticularly on creating a more accurate shooting function. One
student implemented Kahlman filtering to calculate a better
cannon-firing algorithm and several other students imple-
mented discrete approximations to this approach. As with
the student who implemented neural nets, these students
brought knowledge from other classes to this project. One
student implemented such an impressive set of high-level be-
haviors that his learning agent was able to use a very tiny
state space and still be quite successful.

Student ingenuity shone for the planning project as well.
Four of the six groups received extra credit for creativity.
Most of the originality focused on creating interesting high-
level team behaviors. Several teams focused on creating
complex behaviors for individual ships with relatively loose
coordination (the planner took care of the coordination).
One team created a complex set of modes that the team
could enter into and the planner focused on which mode
was best to be in at any one time. Once the mode was
chosen, the individual ship assignments was straightforward.
Additionally, several groups added concurrent conditions to
the action schemas which simplified their planning problems.

4. EVALUATION
Although it is clear from discussions with the students

that they enjoyed the projects, we evaluated the hypothesis
that this class was a significant learning experience using
the student evaluation forms at the end of the semester as
approved by the University of Oklahoma’s Institutional Re-
view Board (IRB). The IRB required that the surveys be
anonymous, which meant we could not observe gender or
race because of the small number of women and minori-
ties. These numbers are low across the entire major and
not specifically low for this class. If we can enroll enough
women and minorities to study the effects of this project
separately for them, we will seek approval to ask for gen-
der and race on our surveys. Twenty one students answered
the supplemental questions. Each question was scored on a
Likert scale where students could strongly agree, agree, be
neutral, disagree, or strongly disagree.

If the project was a successful significant learning experi-
ence, then the students should be interested in taking an-
other class in AI (many of them are graduating seniors so
we cannot simply measure whether they do take another AI
class). In addition, they would highly recommend the class
to other students. The results of these two questions are

shown in lines 1 and 2 of Table 1. In both cases, the over-
whelming majority of the answers are quite positive, which
gives us evidence that the class was a successful significant
learning experience. Selected written student comments are
included below.

“Literally one of my favorite courses at OU. Even
better than topology! Very intense class but the
payoff is exponential. Would definitely look at
AI for grad school as a result of this class.”

“You did a really great job! I feel like I really
learned a lot, and reinforced the stuff I already
knew. I want an RL [Reinforcement Learning]
class!”

“I really enjoyed this course. And I’m taking
machine learning because of it.”

“This class has been the most interesting and
enjoyable CS class to date. ...”

“The best CS class I have taken at OU.”
The next evaluation question examines whether spacewar

was flexible enough to be an interesting example for the
broad set of AI techniques that we asked the students to
implement. This addresses criterion 2 above. The results of
this question are given in line 3 of Table 1. The overwhelm-
ing majority of the students strongly agreed or agreed with
the question and no one disagreed.

Criterion 5 specified that a successful project would give
the students an understanding of what it would be like to
work on a real-world AI application. The results of this eval-
uation were slightly mixed and are shown in line 4 of Table
1. Although a majority of the students agreed with this
comment, more of them simply “agreed” rather than just
“strongly agreed.” A comment from one of the students
sheds some light on this. This student wrote: “Spacewar
project is beneficial in learning AI but it has too many pa-
rameters to justify (and take into account) which is not in
real life case [sic]”. While it is true that you can’t tweak
the parameters of the real world, AI and machine learning
systems that function in the real world generally require a
tunable parameter set. We will address this issue next year
and we expect it will help the students to understand how
spacewar is more realistic.

While group projects are not directly addressing the cri-
teria that we listed for successful projects, they indirectly
address criteria 1, 3 and 6. The results of the student eval-
uation of the groups are shown in line 5 of Table 1. The
majority of the students benefited from the group project.
As one of the students wrote, “My primary problem with
the spacewar projects was understanding the games envi-
ronment and how to turn it into a searchable state space.
Working in the group project and seeing how my other group
members handled it helped a lot in that respect.”

Student evaluations give us one approach to quantifying
the success of the spacewar project for teaching AI. We also
examine average grades as a second measure of success. If
the projects were successful in helping students learn each
of the main concepts, we would expect students to receive
higher grades on the questions related to the projects on
the final exam than on the questions that did not relate
to the projects. This hypothesis was upheld with students
receiving an average of 78.2% on the project based questions
and an average of 72.0% on the non-project questions. We

Line Question Strongly Agree Agree Neutral Disagree Strongly Disagree

1 This class and the instructor stimu-
lated my interest in taking another
class in artificial intelligence.

57.14 19.05 14.29 4.76 4.76

2 I would recommend this course to
other students.

42.86 38.10 19.05 0.00 0.00

3 The Spacewar projects helped me to
apply multiple principles and tech-
niques to a dynamic working exam-
ple of artificial intelligence.

52.38 42.86 4.76 0.00 0.00

4 The Spacewar projects gave me an
idea of what it might be like to work
on real life artificial intelligence ap-
plications.

33.33 47.62 14.29 4.76 0.00

5 My participation in the group
project provided me with experi-
ences that enabled me to learn more
than I would have by doing the
project independently.

38.1 28.57 19.05 9.52 4.76

Table 1: Student evaluation questions and responses. N = 21 for each question. The numbers shown are the
percentage of students who answered each category.

used a paired t-test to check the hypothesis that the project
based questions had a statistically higher mean than the
non-project questions. The difference was significant with
a p-value of 0.006. Other hypotheses, such as easier exam
questions for the project based questions, could explain this
difference as well. However, we feel that the difference in
scores combined with the student evaluations demonstrates
the success of our project.

5. DISCUSSION AND CONCLUSIONS
The variety of projects and the student involvement in the

projects helped to make the AI class a significant learning
experience. The students enjoyed the project and it fulfilled
all of the criteria of a successful project outlined at the be-
ginning. We plan to use the project in the AI class for the
spring of 2007 and beyond. Since this was the first year of
using the Spacewar system in an AI class, we did encounter
some difficulties that we will address in future classes. The
primary issues revolved around the second half of criterion 2
in that the projects required programming beyond that fo-
cused on the current topic. For example, although students
could compute their A∗ graphs, they did not understand
how to create a ship to follow lines. Once we provided them
with line following code (implemented using pd-control [2]),
the difficulties smoothed out. For any future projects, we
will always ensure that we have a solution implemented be-
fore we hand out the project. This will enable us to hand
out code to help them focus only on the AI aspect of the
project.

For the group project, we had several class sessions de-
voted to the groups themselves. The students really felt
that they learned a lot from these discussions and we plan
to extend this to discussions on individual projects in future
years. We hypothesize that these discussions will help the
weaker students. We will evaluate the impact of these dis-
cussions through a control group and through project out-
comes (grades).

While the current Spacewar software met the needs of the
projects this past semester, we would like to be able to lever-

age more advanced software packages for future classes. One
example is the MUPPETS system which is used as a plat-
form for TankBrains, an interactive Java simulator used for
introductory programming [1]. This may be able to be used
to recreate the Spacewar game in an even more compelling
environment for AI programming.

6. ACKNOWLEDGMENTS
We would like to thank Josh Beitelspacher for his key role

in developing the Spacewar environment and the anonymous
reviewers for their helpful comments.

7. REFERENCES
[1] K. Bierre, P. Ventura, A. Phelps, and C. Egert.

Motivating OOP by blowing things up: an exercise in
cooperation and competition in an introductory java
programming course. In SIGCSE ’06: Proceedings of
the 37th SIGCSE Technical Symposium on Computer
Science Education, pages 354–358, New York, NY,
USA, 2006. ACM Press.

[2] J. J. Craig. Introduction to Robotics: Mechanics and
Control. Prentice Hall, 3rd edition edition, 2003.

[3] L. D. Fink. Creating Significant Learning Experiences:
An Integrated Approach to Designing College Courses.
Jossey-Bass, 2003.

[4] J. M. Graetz. The origin of spacewar. Creative
Computing, pages 56–67, August 1981.

[5] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[6] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, second edition, 2003.

[7] M. R. Scheessele and T. Schriefer. Poker as a group
project for artificial intelligence. In Proceedings of the
37th SIGCSE Technical Symposium on Computer
Science Education, pages 548 – 552, 2006.

[8] R. S. Sutton and A. G. Barto. Reinforcement Learning.
An Introduction. MIT Press, Cambridge, MA, 1998.

